Buffalo University Research PFAS
In a wastewater treatment plant, engineered molecular-scale scissors chop up PFAS, toxic compounds that are so tough to break down that they’re called “forever chemicals.” Then, microbes digest the molecular scraps, clearing them from the water.
In a new project, researchers from the University at Buffalo and University of Pittsburgh are teaming up to design the approaches and tools that would make such a system possible. The group will seek to develop advanced catalytic carbon-metal nanomaterials that react with and snip PFAS (per- and polyfluoroalkyl substances), and to identify and isolate bacteria capable of consuming the sliced-up toxins.
What makes the project extremely compelling is that the team will use advanced mass spectrometry and computer modeling to understand what happens at each step of the process, says principal investigator Diana Aga, PhD, Henry M. Woodburn Professor of Chemistry in the UB College of Arts and Sciences.
The study is funded by a $1.5 million grant from the National Institute of Environmental Health Sciences’ Superfund Research Program, part of the National Institutes of Health (NIH). Aga is leading the team, which includes three engineering faculty researchers: Nirupam Aich, PhD, from the UB School of Engineering and Applied Sciences; Ian Bradley, PhD, from the UB School of Engineering and Applied Sciences and UB RENEW Institute; and Carla Ng, PhD from Pitt’s Swanson School of Engineering.
PFAS have emerged as a major concern due to their persistence in the environment and their adverse effects on human health and wildlife. The compounds have been used in a wide range of products, such as firefighting foams, fabrics, non-stick cooking surfaces, food packaging and more.
The new project will focus on 15 common PFAS. But insights from the study could apply to other PFAS as well (there are at least 5,000 types of these compounds).
Any working system is still years away, but the team is excited to attack the PFAS problem using an interdisciplinary approach.
Aich’s lab will craft and test the performance of advanced nanomaterials that combine catalytic metal nanoparticles with graphene oxide nanosheets and have the potential to degrade PFAS. Bradley’s team will use microbial communities to try and break down PFAS components, and then identify useful bacteria and their function through cutting-edge metagenomics and transcriptomics.
Aga and her students will perform chemical analysis to check how the system is working, documenting what parts of the PFAS remain intact at different stages of the research. And Ng’s lab at Pitt will use computational modeling to identify what enzymes are responsible for PFAS biodegradation and understand how degradation is occurring, which will aid in optimizing the design of nanoparticles and singling out high-performing microbes.
The research will build on prior successes, such as a study showing that combined graphene-metal nanomaterials can alter the structure of certain PFAS. The first authors of that research were Arvid Masud and Mary Grace Guardian, recent PhD graduates from Aich’s and Aga’s labs, respectively. The work was funded by the New York State Department of Environmental Conservation through the Great Lakes Research Consortium, and the U.S. National Science Foundation.